Специалисты Ливерморской национальной лаборатории Лоуренса добились рекордных показателей «горения» термоядерного топлива — в течение 100 триллионных долей секунды выделилось более 1,3 мегаджоуля энергии. Таким образом, мощность вспышки при слиянии атомов водорода в гелий превысила 10 квадриллионов ватт, сообщают учёные на официальном сайте лаборатории. Как установили рекорд Комплекс NIF (
Подробности
National Ignition Facility) состоит из 192 мощных лазеров, направленных в центр камеры зажигания. Туда учёные помещают маленькую таблетку с термоядерным топливом — дейтерием и тритием, двумя разновидностями (изотопами) водорода. При запуске NIF лазеры светят на таблетку со всех сторон, мгновенно накаляют её до состояния плазмы и сжимают до сферы шириной с человеческий волос. Образуется ударная волна, которая сходится в центр сферы и создаёт давление, достаточное чтобы атомы водорода начали сливаться в гелий — таким образом, происходит термоядерная реакция. Ещё в 2012 году NIF не мог добиться начала термоядерной реакции, из-за чего его посчитали бесперспективным и хотели закрыть. В 2013 году реакция произошла, но выделила лишь 0,73% затраченной энергии. А сейчас комплекс выдал в восемь раз больше энергии, чем во время своего предыдущего рекорда весной 2021 года, и достиг эффективности в 70%. Это даёт физикам повод для оптимизма — они предполагают, что NIF «подошёл к порогу» зажигания реакции, которое открывает путь к термоядерной энергетике.
HB11 Energy — дочерняя компания Университета Нового Южного Уэльса, и сегодня она объявила, что запатентовала свой уникальный подход к производству термоядерной энергии в Японии, Китае и США. Результаты многолетних исследований заслуженного профессора Генриха Хоры позволяют отказаться от редких и сложных в использовании видов топлива, таких как тритий, а также от невероятно высоких температур. В
Подробности
место этого профессор Хора использует много водорода и бора B-11. Чтобы начать реакцию синтеза, он применяет специальные высокоточные лазеры. Вот как HB11 описывает свой «обманчиво простой» подход: конструкция представляет собой «полую металлическую сферу, где в центре удерживается небольшая топливная таблетка. С разных сторон сферы расположены отверстия для двух лазеров. Один лазер обеспечивает магнитное поле, удерживающее плазму, второй запускает лавинообразную цепную термоядерную реакцию. Альфа-частицы, генерируемые реакцией, будут создавать электрический поток, который может быть направлен почти напрямую в существующую электрическую сеть, не требуя теплообменника или паровой турбины". Управляющий директор HB11 доктор Уоррен Маккензи разъясняет: «Во многих экспериментах по термоядерному синтезу используются лазеры для нагревания до сумасшедших температур — мы этого не делаем. Мы используем лазер для массового ускорения водорода через образец бора, используя нелинейное форсирование. Можно сказать, что мы используем водород в качестве дротика и надеемся попасть в бор, и если мы в него попадем, мы можем начать реакцию синтеза. В этом суть. С научной точки зрения температура — это скорость движения атомов. Когда термоядерный синтез создают при помощи высокой температуры, то по существу случайным образом перемещают атомы, в надежде, что они столкнутся друг с другом. Наш подход гораздо точнее». «Слияние водорода и бора создает пару атомов гелия», — продолжает он. «Это голые гелии, у них нет электронов, поэтому у них есть положительный заряд. Нам просто нужно собрать этот заряд. По сути, недостаток электронов является продуктом реакции, и он напрямую создает ток». Сами лазеры опираются на ультрасовременную технологию, разработка которой принесла изобретателям Нобелевскую премию по физике в 2018 году. По словам разработчиков, такая установка гораздо меньше и проще, чем любой из высокотемпературных термоядерных генераторов, они будут достаточно компактными, чистыми и безопасными для сборки в городских условиях. При этом не будет ни ядерных отходов, ни перегретого пара и ни малейшей опасности расплавления реактора.
Команда исследователей Вашингтонского университета во главе с Томасом Джарбо разрабатывает диномак (дайномак). Согласно их последним заявлениям, реактор сможет предоставить энергию себестоимостью дешевле энергии тепловых электростанций.

По сравнению с другими термоядерными реакторами диномак может стоить в десять раз меньше и производить в пять раз больше энергии. Ватт энергии от динома
Подробности
ка достигнет цены ватта от угольных ТЭС, но это возможно только при крупных масштабах выработки.

Называются конкретные цифры: гигаваттный термоядерный реактор будет стоить 2,7 млрд долларов, в то время как на угольные станции сравнимой мощности уйдёт 2,8 млрд. Разумеется, это всего лишь теоретические выкладки. Исследователи значительно улучшили конструкцию, и если они получат необходимое финансирование, постройка реактора вполне возможна.

Токамаки выглядят как пустые тороидальные вакуумные полости, стенки которых выложены термостойкими металлами или керамикой. За пределами камеры расположены массивные сверхпроводящие магниты, которые производят тороидальные магнитные поля, удерживающие плазму температурой в миллионы градусов.

Предлагаемый Вашингтонским университетом диномак — это дальнейшее развитие сферомака, варианта токамака. Самым важным изменением является то, что сферомак не наследует дорогие и нуждающиеся в охлаждении для достижения сверхпроводимости магниты токамака, а генерирует магнитные поля путём прохода электрических токов через саму плазму.

Как говорит аспирант Вашингтонского университета Дерек Сазерленд, это сложная задача. Для того, чтобы всё сработало, нужно не только понимание сложных физических процессов поведения плазмы, но и эффективный способ проведения тока. Можно легко увести всю производимую реактором энергию обратно в плазму. Такая электростанция бесполезна, поскольку она производит достаточно энергии лишь для собственных нужд.

Согласно заявлению Сазерленда, в 2012 году произошёл большой прорыв, тогда был открыт новый способ удержания плазмы. В результате различных техник можно достичь лучшую, чем когда-либо до этого, эффективность прохождения тока через плазму и стабильное состояние синтеза в относительно небольшом реакторе.

Оптимизм внушает и то, что отличий в альтернативной системе от уже существующих не так много. Также понадобится меньшее магнитное поле, что снизит цену, сложность и размеры реактора — дорогие охлаждённые до состояния сверхпроводимости магниты не так-то легко защитить от жара термоядерной реакции.

Фред Скифф заметил, что есть и некоторые неизвестные детали, нуждающиеся в исследовании. Необходимо проверить возможность сохранения высокого сжатия и управления параметрами тока и позицией плазмы.